



**CIXTEN**  
Carbon Dioxide To Energy

CO<sub>2</sub> driving decarbonization

# Conversion of low temperature heat into useful energy



thermal enhancement

*A new generation of heat pump to decarbonize industry*



- Useful heat up to 250°C
- ΔT up to 100°C
- water / steam / air

WASTE HEAT FROM 60°C

COP<sub>elec</sub> 5 TO 20

SUPERCRITICAL CO<sub>2</sub>

ΔT 20°C to 100°C

USEFUL HEAT UP TO 250°C

## Recovered heat production

Waste heat pump

### THE LARGEST SOURCE OF UNUSED ENERGY IN THE WORLD



2860 TWh / year  
in the UE

Equivalent to the total heating and hot water demand of EU residential and tertiary buildings

### OUR MISSION

*Unlock the energy potential of low-temperature waste heat to produce useful, competitive, low-carbon, and local energy*



## EFFICIENT HEAT PRODUCTION BASED ON TWO KEY PRINCIPLES

### 1. WASTE HEAT AS DRIVING ENERGY

The thermal machine developed by Cixten captures a fraction of the waste heat and converts it into mechanical energy, reused to run the thermal heat pump cycle. **Electricity consumption is reduced by a factor of 5 to 8** compared to traditional HP cycles.

#### Results :

- Significantly lower operating costs
- Heat produced at a cost lower than gas boiler

### 2. LEVERAGING THE EXCEPTIONAL PROPERTIES OF sCO<sub>2</sub>

Supercritical CO<sub>2</sub> (sCO<sub>2</sub>) is neutral, safe, and non-flammable. Thanks to its thermodynamic properties, it outperforms traditional working fluids:

- High thermal conductivity
- High volumetric density
- High energy density

#### Results :

- Excellent thermodynamic efficiency
- Compact and cost-reducing equipment
- Wide temperature range

## HEAT PRODUCTION

#### Performance :

- **COP : from 5 to 20**
- **ΔT lift : +20 to +100°C** between the waste heat source and the useful heat sink

#### Useful heat production :

- **From 100°C to 250°C**
- **500 kW<sub>th</sub>** on industrial pilot (up to 1 MW<sub>th</sub> with direct exchange)
- scaling up to 1 MW<sub>th</sub> for commercial machine

#### Waste heat source to valorize :

- From 60°C
- With at least 1.5 MW<sub>th</sub> available

## TRL7 INDUSTRIAL PILOT



## EXPLOIT THE UNEXPLOITED

*The most competitive energy is the one you already have*



### THP operation and benefits

**What if your waste heat was worth more than your burned gas?**

#### Cixten develops a next-gen HP with unprecedented performance

High-temperature heat (>120°C) is a key challenge for industrial decarbonization. By exceeding the temperature and performance limits of today's industrial heat pumps, Cixten's technology valorizes waste heat up to 250°C.

#### Combinaison of two cycles

##### Thermal upgrading through the combination of :

- ⌚ A first **power cycle** that converts part of the heat into mechanical energy.
- ⌚ A second **lift cycle** that uses this energy to raise the temperature of the waste heat source.

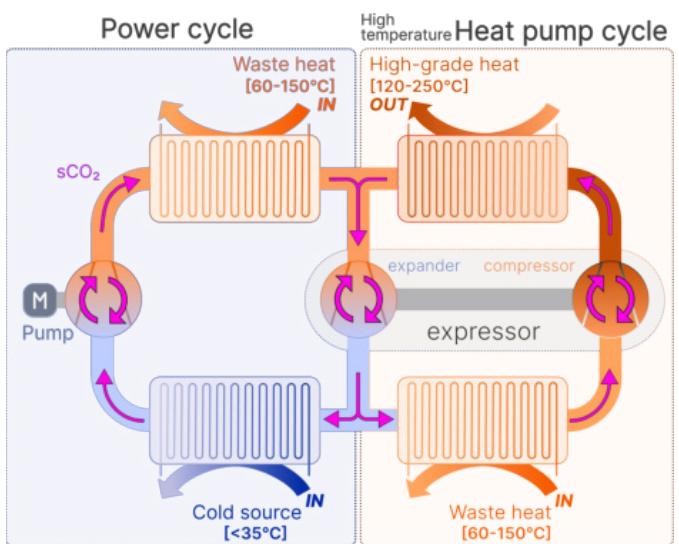
#### THP's patented trithermal architecture

Based on interaction of 3 thermal levels:

- 🔥 The waste heat source powering both cycles
- 💧 A cold source <35°C to balance the cycles
- 🔥 A heat sink producing between 100 and 250°C

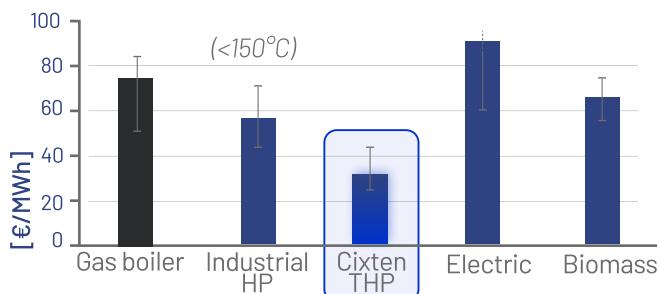


Achieves **up to 8x higher COP** than conventional heat pumps thanks to its **power cycle driven by waste heat**




**Easy on-site integration** due to low electricity consumption: **from a few dozen to around 100 kW**




**Up to 50% reduction** in the client's process-related **GHG emissions**

#### THP architecture :



## Economic comparison

#### LCOH of industrial heat production solutions (€/MWh):



**Comparison of the Levelized Cost of Heat (LCOH)** of different low-carbon technologies with conventional heat production from natural gas boilers

Gas price : 40€/MWh  
 Annual heat production : 8 GWh  
 Amortization period : 15 years

THP stands out as the most cost-effective solution, offering a low Levelized Cost of Heat (LCOH) between €25 and €45/MWh. The savings from avoided natural gas consumption quickly compensate for the initial investment—making decarbonizing your heat supply cheaper than inaction.

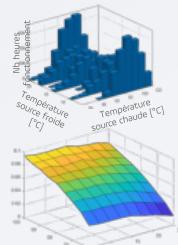
# BECOME A PIONEER

## of a new industrial model of performance energy competitiveness decarbonization

— Cixten is looking for industrial partners to launch pilot projects —

### Feasibility studies & simulations

#### 1. PRE-STUDY


Rapid evaluation to identify waste heat recovery potential.

**Target deployment on industrial site in early 2027.**

#### 2. FEASIBILITY STUDY

Structured study to secure commitment to a pilot project:

- ✓ Characterization of the heat source
- ✓ Integration study
- ✓ Equipment sizing
- ✓ On-site deployment study
- ✓ Techno-economic evaluation



#### OUR METHODOLOGY

- ⦿ Digital twin of our machine to simulate onsite performance
- ⦿ Complete and objective approach  
Integrated technical, economic, environmental, and regulatory analysis, with access to specialized external expertise when required.
- ⦿ Strategic guidance  
Alignment with internal constraints and regulatory frameworks (EU certifications), and identification of relevant funding schemes



### Technological advantages

Introduction of a power cycle

→ No equivalent heat per kWh of electricity consumed

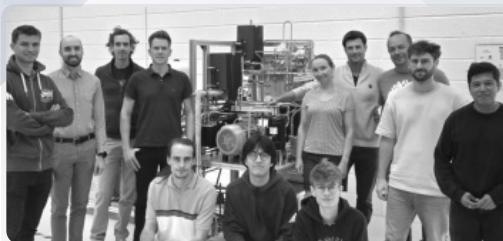
Exceptional properties of sCO<sub>2</sub>

→ Target heat: up to 250°C, ΔT up to +100°C

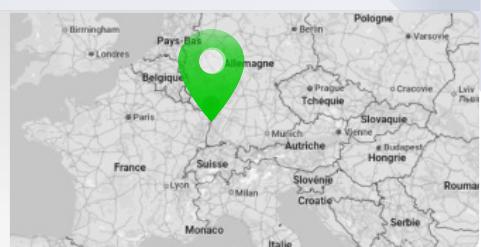
Partial load operation without COP loss

→ Reduced dependence on stability/ quality of low-temp heat

### Pilot project


#### Waste heat :

- Temperature > 60°C
- Power > 1,5MWth
- Availability > 5000 h/year


#### Useful heat need :

- ΔT lift : +20 to +80 °C between source and sink
- Thermal output ranging from 350 to 500 kWth.
- Synchronized with waste heat availability

### CIX'TEAM



- Created in 2022 by 3 Franco-German cofounders
- 12-person team, 75% R&D
- Strong innovation DNA
- Headquarters : Alsace, FRANCE



### Support & Networks

